Linear Programming, the Simplex Algorithm and Simple Polytopes

نویسندگان

  • Biswal Bagaban Department of Mathematics F.M.Autonomous College, Balasore, Orissa, India
  • Das Bhusan Department of Mathematics,Balasor college of Engg & Teach. Sergarh, Balasore, Orissa, India
  • J.P Tripathy Department of Mathematics Gurukul Institute of Bhubaneswar,Orissa,India
چکیده مقاله:

In the first part of the paper we survey some far reaching applications of the basis facts of linear programming to the combinatorial theory of simple polytopes. In the second part we discuss some recent developments concurring the simplex algorithm. We describe sub-exponential randomized pivot roles and upper bounds on the diameter of graphs of polytopes. 

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

linear programming, the simplex algorithm and simple polytopes

in the first part of the paper we survey some far reaching applications of the basis facts of linear programming to the combinatorial theory of simple polytopes. in the second part we discuss some recent developments concurring the simplex algorithm. we describe sub-exponential randomized pivot roles and upper bounds on the diameter of graphs of polytopes.

متن کامل

Linear programming, the simplex algorithm and simple polytopes

In the rst part of the paper we survey some far-reaching applications of the basic facts of linear programming to the combinatorial theory of simple polytopes. In the second part we discuss some recent developments concerning the simplex algorithm. We describe subexponential randomized pivot rules and upper bounds on the diameter of graphs of polytopes.

متن کامل

Simple Metaheuristics Using the Simplex Algorithm for Non-linear Programming

In this paper we present an extension of the Nelder and Mead simplex algorithm for non-linear programming, which makes it suitable for both unconstrained and constrained optimisation. We then explore several extensions of the method for escaping local optima, and which make it a simple, yet powerful tool for optimisation of nonlinear functions with many local optima. A strategy which proved to ...

متن کامل

A Nonstandard Simplex Algorithm for Linear Programming

The simplex algorithm travels, on the underlying polyhedron, from vertex to vertex until reaching an optimal vertex. With the same simplex framework, the proposed algorithm generates a series of feasible points (which are not necessarily vertices). In particular, it is exactly an interior point algorithm if the initial point used is interior. Computational experiments show that the algorithm ar...

متن کامل

A Fast Simplex Algorithm for Linear Programming

Recently, computational results demonstrated remarkable superiority of a so-called “largest-distance” rule and “nested pricing” rule to other major rules commonly used in practice, such as Dantzig’s original rule, the steepest-edge rule and Devex rule. Our computational experiments show that the simplex algorithm using a combination of these rules turned out to be even more efficient. Mathemati...

متن کامل

Solving multiobjective linear programming problems using ball center of polytopes

Here‎, ‎we aim to develop a new algorithm for solving a multiobjective linear programming problem‎. ‎The algorithm is to obtain a solution which approximately meets the decision maker's preferences‎. ‎It is proved that the proposed algorithm always converges to a weak efficient solution and at times converges to an efficient solution‎. ‎Numerical examples and a simulation study are used to illu...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 06  شماره 1

صفحات  567- 590

تاریخ انتشار 2010-09-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023